EXERCISE 9.3

In each of the Exercises 1 to 5, form a differential equation representing the given family of curves by eliminating arbitrary constants *a* and *b*.

- **1.** $\frac{x}{a} + \frac{y}{b} = 1$ **2.** $y^2 = a (b^2 x^2)$ **3.** $y = a e^{3x} + b e^{-2x}$
- 4. $y = e^{2x} (a + bx)$ 5. $y = e^x (a \cos x + b \sin x)$
- 6. Form the differential equation of the family of circles touching the *y*-axis at origin.
- 7. Form the differential equation of the family of parabolas having vertex at origin and axis along positive *y*-axis.
- 8. Form the differential equation of the family of ellipses having foci on *y*-axis and centre at origin.
- **9.** Form the differential equation of the family of hyperbolas having foci on *x*-axis and centre at origin.
- **10.** Form the differential equation of the family of circles having centre on *y*-axis and radius 3 units.
- 11. Which of the following differential equations has $y = c_1 e^x + c_2 e^{-x}$ as the general solution?

(A)
$$\frac{d^2y}{dx^2} + y = 0$$
 (B) $\frac{d^2y}{dx^2} - y = 0$ (C) $\frac{d^2y}{dx^2} + 1 = 0$ (D) $\frac{d^2y}{dx^2} - 1 = 0$

12. Which of the following differential equations has y = x as one of its particular solution?

(A)
$$\frac{d^2 y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$$

(B) $\frac{d^2 y}{dx^2} + x \frac{dy}{dx} + xy = x$
(C) $\frac{d^2 y}{dx^2} - x^2 \frac{dy}{dx} - xy = 0$
(D) $\frac{d^2 y}{dx^2} + x \frac{dy}{dx} + xy = 0$

9.5. Methods of Solving First Order, First Degree Differential Equations

In this section we shall discuss three methods of solving first order first degree differential equations.

9.5.1 Differential equations with variables separable

A first order-first degree differential equation is of the form

$$\frac{dy}{dx} = F(x, y) \qquad \dots (1)$$

392 MATHEMATICS

If F(x, y) can be expressed as a product g(x) h(y), where, g(x) is a function of x and h(y) is a function of y, then the differential equation (1) is said to be of variable separable type. The differential equation (1) then has the form

$$\frac{dy}{dx} = h(y) \cdot g(x) \qquad \dots (2)$$

If $h(y) \neq 0$, separating the variables, (2) can be rewritten as

$$\frac{1}{h(y)} dy = g(x) dx \qquad \dots (3)$$

Integrating both sides of (3), we get

$$\int \frac{1}{h(y)} dy = \int g(x) dx \qquad \dots (4)$$

Thus, (4) provides the solutions of given differential equation in the form

$$\mathbf{H}(\mathbf{y}) = \mathbf{G}(\mathbf{x}) + \mathbf{C}$$

Here, H (y) and G (x) are the anti derivatives of $\frac{1}{h(y)}$ and g(x) respectively and C is the arbitrary constant.

Example 9 Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x+1}{2-y}$, $(y \neq 2)$

Solution We have

$$\frac{dy}{dx} = \frac{x+1}{2-y} \qquad \dots (1)$$

Separating the variables in equation (1), we get

$$(2 - y) dy = (x + 1) dx ... (2)$$

Integrating both sides of equation (2), we get

$$\int (2-y) \, dy = \int (x+1) \, dx$$

$$2y - \frac{y^2}{2} = \frac{x^2}{2} + x + C_1$$

or

or

or

$$x^2 + y^2 + 2x - 4y + 2 C_1 = 0$$

$$x^{2} + y^{2} + 2x - 4y + C = 0$$
, where $C = 2C_{1}$

which is the general solution of equation (1).