EXERCISE 9.3

In each of the Exercises 1 to 5, form a differential equation representing the given family of curves by eliminating arbitrary constants *a* and *b*.

- **1.** $\frac{x}{a} + \frac{y}{b} = 1$ + = **2.** *y*² = *a* (*b*² – *x*²) **3.** *y* = *a e*3*^x* + *b e*– 2*^x*
- **4.** $y = e^{2x} (a + bx)$ **5.** $y = e^x (a \cos x + b \sin x)$
- **6.** Form the differential equation of the family of circles touching the *y*-axis at origin.
- **7.** Form the differential equation of the family of parabolas having vertex at origin and axis along positive *y*-axis.
- **8.** Form the differential equation of the family of ellipses having foci on *y*-axis and centre at origin.
- **9.** Form the differential equation of the family of hyperbolas having foci on *x*-axis and centre at origin.
- **10.** Form the differential equation of the family of circles having centre on *y*-axis and radius 3 units.
- **11.** Which of the following differential equations has $y = c_1 e^x + c_2 e^{-x}$ as the general solution?

(A)
$$
\frac{d^2y}{dx^2} + y = 0
$$
 (B) $\frac{d^2y}{dx^2} - y = 0$ (C) $\frac{d^2y}{dx^2} + 1 = 0$ (D) $\frac{d^2y}{dx^2} - 1 = 0$

12. Which of the following differential equations has $y = x$ as one of its particular solution?

In each of the Exercises 1 to 5, form a differential equation representing the given
family of curves by eliminating arbitrary constants *a* and *b*.
\n1.
$$
\frac{x}{a} + \frac{y}{b} = 1
$$
 2. $y^2 = a (b^2 - x^2)$ 3. $y = a e^{3x} + b e^{-2x}$
\n4. $y = e^{2x} (a + bx)$ 5. $y = e^x (a \cos x + b \sin x)$
\n6. Form the differential equation of the family of circles touching the y-axis at
\n σ origin.
\n7. Form the differential equation of the family of parabolas having vertex at origin
\nand axis along positive y-axis.
\n8. Form the differential equation of the family of ellipses having foci on y-axis and
\ncenter at origin.
\n9. Form the differential equation of the family of hyperbolas having foci on x-axis
\nand centre at origin.
\n10. Form the differential equation of the family of circles having centre on y-axis
\nand radius 3 units.
\n11. Which of the following differential equations has $y = c_1 e^x + c_2 e^{-x}$ as the general
\nsolution?
\n(A) $\frac{d^2y}{dx^2} + y = 0$ (B) $\frac{d^2y}{dx^2} - y = 0$ (C) $\frac{d^2y}{dx^2} + 1 = 0$ (D) $\frac{d^2y}{dx^2} - 1 = 0$
\n12. Which of the following differential equations has $y = x$ as one of its particular
\nsolution?
\n(A) $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$ (B) $\frac{d^2y}{dx^2} + x \frac{dy}{dx} + xy = x$
\n(C) $\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx}$ xy 0 (D) $\frac{d^2y}{dx^2} + x \frac{dy}{dx} + xy = 0$
\n9.5. **Methods of Solving First Order, First Degree Differential Equations**
\nIn this section we shall discuss three methods of solving first order first degree differential
\nequations.
\n9.5.1 **Differential equations with variables separable**
\nA first order-first degree differential equation is of the form
\n $\frac{dy}{dx} = F(x, y)$...(1)

9.5. Methods of Solving First Order, First Degree Differential Equations

In this section we shall discuss three methods of solving first order first degree differential equations.

9.5.1 *Differential equations with variables separable*

A first order-first degree differential equation is of the form

$$
\frac{dy}{dx} = F(x, y) \tag{1}
$$

392 MATHEMATICS

If $F(x, y)$ can be expressed as a product $g(x) h(y)$, where, $g(x)$ is a function of x and $h(y)$ is a function of y, then the differential equation (1) is said to be of variable separable type. The differential equation (1) then has the form

$$
\frac{dy}{dx} = h(y) \cdot g(x) \qquad \dots (2)
$$

If $h(y) \neq 0$, separating the variables, (2) can be rewritten as

$$
\frac{1}{h(y)} dy = g(x) dx
$$
 ... (3)

Integrating both sides of (3), we get

$$
\int \frac{1}{h(y)} dy = \int g(x) dx \qquad \dots (4)
$$

Thus, (4) provides the solutions of given differential equation in the form

$$
H(y) = G(x) + C
$$

Here, H (*y*) and G (*x*) are the anti derivatives of $\frac{1}{h(y)}$ and $g(x)$ respectively and C is the arbitrary constant. Here, H (y) and G (x) are the anti

C is the arbitrary constant.
 Example 9 Find the general solution of
 Solution We have
 $\frac{dy}{dx} =$

Separating the variables in equation (1
 $(2 - y) dy =$

Integrating both sides of equ anov) is a cunction of y, then the tourism expansion of the same of the republished type. The differential equation (1) then has the form $\frac{dx}{dx} = h(y) \cdot g(x)$... (2)

If $h(y) \neq 0$, separating the variables, (2) can be rew

Example 9 Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x+1}{x+1}$ 2 *dy x* $\frac{dy}{dx} = \frac{x+1}{2-y}, (y \neq 2)$

Solution We have

$$
\frac{dy}{dx} = \frac{x+1}{2-y} \qquad \qquad \dots (1)
$$

Separating the variables in equation (1), we get

$$
(2 - y) dy = (x + 1) dx
$$
 ... (2)

Integrating both sides of equation (2), we get

$$
\int (2-y) dy = \int (x+1) dx
$$

$$
2y - \frac{y^2}{2} = \frac{x^2}{2} + x + C_1
$$

or

$$
x^2 + y^2 + 2x - 4y + 2C_1 = 0
$$

or *x*²

or $x^2 + y^2 + 2x - 4y + C = 0$, where $C = 2C_1$ which is the general solution of equation (1).